
Qg )1/3 
= ~-~ k2c 2 (~S) 2/~ 

= ~ , (20) 

where ~ = I/oa is the resistance of the current layer per unit length. If we insert the 
value ~ S'I/4 into (20) - this being the value at which the maximum increment is obtained, 
then we obtain the correct relation ~a?max ~ S I/~ [5]. There is also quantitative agreement 
with the results of numerical calculations in the longwave region ~<S-I/4 (Fig. 2, i - 
(20), 2 -calculation from [5]). 
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EVOLUTION OF AN INTENSE SPHERICAL SHOCK 

WAVE IN AN INHOMOGENEOUS ATMOSPHERE 

V. A. Pavlov UDC 534.222.2 

After the publication of [I] special interest arose in the propagation of intense spheri- 
cal [2-6] and planar [3, 7, 8] shock waves in an inhomogeneous atmosphere. The "geometric 
dynamics" of intense shock waves has been developed [9, I0], and a "characteristic rule" has 
been proposed for such waves [i0, ii]. The technique of [9-11] has been applied successfully 
to planar waves [i0]. 

Relying on the concepts of [9-11] the present study will examine evolution of an intense 
spherical shock wave in an inhomogeneous atmosphere. The accuracy of the approximate analyti- 
cal expressions obtained proves to be higher than the analogous results of [1-5]. 

The undisturbed state of atmospheric density and pressure are characterized by the 
expression 9o(z)/9o(0) = po(z)/po(O) ~ exp (--z/H) (where H is the height of the "homogeneous" atmos- 
phere). We will describe the medium by a system of gas dynamics equations 

09/Ot+div(pv)=Q~, dv/dt=--(l/9)vp+g=Q2, 
d p / d t - - a 2 d 9 / d t  - Q3, 

(1) 

where v, g, a are gas velocity, the acceleration of gravity, and the speed of sound; Q1(t, 

r) = Q0~(06(r); Q~(t, r)= Q0=(t)6(r)I1z; Q3(t, r)= Q03(06(r) is a function describing a point source. 
This source is located at the point R = 0 (where R, 8 are spherical coordinates, z = R cos 0) 
and excites an intense shock wave which departs to infinity. Sincethe properties of the 
medium depend only on the single coordinate z, the source is a point, and its impulse is 
oriented along the z axis, the solution of Eq. (I) will have axial symmetry. It is known [5, 
6] that in a wave moving upward the velocity of front displacement changes nonmonotonically, 
passing through a minimum at R = 1.5H/cos 8 [6] (the analytical calculations of [5] give a 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 
pp. 95-99, March-April, 1988. Original article submitted December 22, 1986. 

248 0021-8944/88/2902-0248512.50 �9 1988 Plenum Publishing Corporation 



Z 

Y - / R  o~ 

Fig. 1 

coarse result: R = 4H/cos 0). In the present study we will analyze the evolution of an 
intense shock wave (Mach number M > I) in that stage in which the shock front velocity u 
increases monotonically: R~R0>i.SH/cos 0, 0~8~/2. For intense shock waves it is permis- 
sible study the field on the front, without considering wave structure behind the front [9- 
ii]. It is then possible to obtain approximate analytical expressions for the fields on the 
front. 

Let Qol(t), Q02(t), Qo3(t) be functions such that the source in Eq. (I) at a distance R = R 0 
creates a shock wave with a profile in the form of a "discontinuity." We assume that the 
shock front velocity u(R0, 0) is known. We require that on the front well-known relationships 
for a "discontinuity" be satisfied: 

where 

2a 0 

O=Po(Z)~ I+V_~M.,] ' 

M = u'(a' 0--)):> ~; E1 (M) = [ l + 4'' - ('' - ' ) 2 a o  ' 2~, (? --  l) M 2 ~ ]  

ap = aoOo (Z) ~ r ~ E, (M), 
(2) 

1/2 2 ]-i 
1-} (~,_I)M2 I ; 

a, a o are the s p e e d  of sound 

and the undisturbed value of that quantity; ? is the heat capacity ratio at constant pressure 
and volume. 

As in [9], we introduce the nonlinear ray coordinates ~, fl, related to the shock front 
(Fig. i). We assume that the reference vector e~ is perpendicular to the shock front (e a • 
eft), and moreover that (e R, e=) ~ cos A. As length elements along the axes ~ and ft. We take 
respectively M d~ and A dfl, A being a dimensionless function describing the cross section of 
the ray tube [9]. Thus, we use here coordinates with inhomogeneous nonlinear length scales. 
The shock wave can be described by three functions: A(~, fl), M(a, fl), and A(~, fl), which 
satisfy two nonlinear "geometric dynamics" equations [9]: 

aA/a~ - -  ( t I M )  aAlaa; (3 )  

aAla~ = ( -  i / A  )aYLlaf$. (4) 

In essence, Eqs. (3), (4) represent the condition of invariance of the square of the length 
element M2d2~ ~ A2d~ ~ upon transition to the original coordinate system R, #. We obtain the 
lacking third equation on the basis of the approximate "characteristic law" of [I0, ii], 
assuming that the shock wave profile has the form of a discontinuity, Eq. (2), and identifying 
the discontinuity with the surface of the characteristics C+ of the gas dynamics equations 
(i). We will use the approximation of a one-dimensional field propagating in a thin ray tube 
along the coordinate ~. In such a ray tube with gas-impermeable walls when the conditions of 
weak dependence of the fields on coordinate fl 

I a V a a 

are satisfied, we have the approximate relationships 

8 d 0 div (9v) ~ ~ (Apu), v ~ u~, ~ ~ ~ § u ~  
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TABLE I 

[6] 

v I b*(V) I 

i , t  0,tt7 
1,2 0,t46 
t,4 0,t74 
t,5 0,t84 
5/3 0,195 
2,0 0,2ti 

Spherical wave 

calculation by 
E,~. (lo) 

b (~) 

0,t3t9 
0,1530 
0,t798 
0,t859 
0,1926 
0,2000 

self-similar parabolic ap- 
solution for[proximation for l 
A = A(R) [41 A i A_~(R) [4__._]_] ___ 

6 (V) % ] b (V) 6 (V) % I b (V) 1':5 (~2) % [ 

+4+12'7,79 0,1269 l +3 ,33  --27,t 0,129I --25,6 
+1,03 
--1,23 
--5,21 

[5] 

b (v) 

0,04167 
0,07143 
0,1tlt 
0,t250 
0,1429 
0,t667 

6 (v) % 

--64,4 
--5t,t  
--36,1 
--32,i 
--26,7 
--2t ,0 

and system (I) simplifies: 

ao t a (Apv) ~-, QI, 
a - 7 + ~  (5) 

Ov Ov t Op Op ap _2{aP Op 
o-7 + v M"0a + ~ M  0"--~ + (g' ca) ~ (Q2, ecz), o--/" + vb'~ - -  ~ ~,~ + v ~---~) ~ Q3. 

From s y s t e m  (5)  f o r  t h e  c h a r a c t e r i s t i c s  C+ a t  0 _< 0 -< n / 2 ,  R-> R 0 we o b t a i n  

dp dv a29v dA 9ag cos 0 d~ 
Md~z +PaMdo~ A(v+a) Md~z v + a  ' M - d ? = v + a ,  (6) 

The s y s t e m  o f  e q u a t i o n s  ( 2 ) ,  (6.) g i v e s  t h e  d e s i r e d  t h i r d  e q u a t i o n  f o r  f i n d i n g  A, M, A: 

i dM ~ I do o (2M2 ~ t.) 
E-~ (M) d~ p 0 ~ \  ~ (7) 

t E1 (M) (y+l).[a2pv~ t d A  (?+l )  g[paM~cosO, E2(M ) = 2 I + ~ , 
= p0 % ( v + a )  YA ~ p0 a2 ( v + a )  

In  t h e  s t a g e  R > R 0 we must  d e a l  w i t h  t h e  homogeneous  s y s t e m  o f  e q u a t i o n s  ( 3 ) ,  ( 4 ) ,  (7)  and 
r e p l a c e  t h e  s o l u t i o n  o f  t h e  p r o b l e m  w i t h  s o u r c e s  Q1, Q2, Q3 by  a b o u n d a r y  p r o b l e m .  The f u n c -  
t i o n s  w i t h i n  t h e  c u r l y  b r a c k e t s  o f  Eq. (7) depend  s o l e l y  on M. The r o l e  o f  t h e  s o u r c e s  Q1, 
Q2, Q3 appears as creation of a profile in the form of a discontinuity and specification of 
the shock front velocity u(R0, 8) on a sphere of radius RQ. We solve system (3), (4), (7) ap- 
proximately, assuming that the local form of the shock front differs only slightly from 
spherical. The functions M and A will then vary slowly with angular coordinate 8 as compared 
to their change as functions of R. We transform to a system of local orthogonal coordinates 
R, X (see Fig. i), attached to a point on the shock wave fronts ~B: % = xcos0 --zsin0, R 
x s i n 0  + z c o s 0 ,  Mda : d B c o s A +  d%sinA,  Ad~ ~ - - d z c o s A  + d B s i n A  ( t h e  v e c t o r s  x ,  z ,  ~, 
fl l i e  i n  one p l a n e ) .  We r e p l a c e  s y s t e m  ( 3 ) ,  (4)  a p p r o x i m a t e l y  by  t h e  e q u a t i o n s  

O (sinAI 0 (cosA 1 a (cosA'] 0 (.s_i~) 
~ \ - 2 - / +  ~- f f \ -7 - /=  0, ~ \ T / - -  ~ = o, (8) 

which have  t h e  s o l u t i o n  A = A(%), A/M ~ const, A = A(R), M = M(R). 

Upon t r a n s i t i o n  f rom Eqs.  ( 3 ) ,  (4)  to  Eq. (8)  t h e  a n g l e  8 t a k e s  on t h e  r o l e  o f  a parame-  
t e r ,  t h e  r a y  c o o r d i n a t e s  become R, X and as a c o n s e q u e n c e  we o b t a i n  a c o n d i t i o n  f o r  s y n c h r o -  
nous change  o f  t h e  f u n c t i o n s  A and M: A/M = c o n s t .  In  t h e  c a s e  t o  be c o n s i d e r e d  f u r t h e r  M >> 

%a (Y) dM IdA ~. dP~ ~, 0. o r  i, Eq. (7) can be simplified to --~--d~+~+(I+%2(~) d~ 

A/A~ = (M/M~ Iv o (R o cos O)] (9) 

h e r e  Xx(?) = t + 2/? + 1/2?/(? - -  1); Xa(l.4) = 5.0743227; X2(?) = V (? - t)/27 - (? - 1)/?; 

~2(I,4) = 0.0922502; A0, M 0 are the values of the functions A, M at R = R 0. The system of 
Eqs. (8), (9) have the solution 

M(B)/M 0 : A(B)/A o = exp[(b(y)/H)(R --Ro)cOs 01,: 

A(E) = --(%/H)b(?) cos O, b(?) = (1 + k2(?))/(l q- %1(?)). 
( i0)  
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Plane wave 

self-similar 
soludon [~1 

b(~,) i 6(v)% 

0,126 +t6 ,2  
0,i55 +6 , t6  

0,{76 --3,26 
0,204 4-4,62 
0,2i9 --]-3,79 

sel f- simila 
solution [73 

b (7) 6 (v) % 

0,154 4-6,16 

O,2O4 4-4,62 

self-similar 
solution [~] 

b (v) 

O, 1545 
0,1835 
0,193 
0,204 
0,2i9 

6 (v) % 

-4-5,82 
4-5,46 
4-4,89 
4-4,61 
+4,~o 

b(v) ( 2 + .  ~:Sj 
[ tol  

b ('~) 6 (v) % 

0,149 4-27,3 
0,t83 ~25,3 
0,2i5 4-23,9 
0,225 4-22,0 
0,236 4-21,0 
0,250 4-28,2 

According to Eq. (i0) the cross-sectional area of the ray tube A(R) varies exponentially. 
The hypothesis of an exponential dependence A(R) was used in [3, 4] to construct a self-simi- 
lar solution of the second sort, but synchronous change of A(R) and M(R) was lacking. In [5] 
the authors commenced from the assumption A(R) - R 2. A comparison of Eq. (I0) for the parame- 
ter b(?) with data of other studies is given in Table i, where b = b,(?) is the result of 
numerical integration of the gas dynamics equations [6]. The parameter 5(7) = (b(~)--b,(?))/b ,- 
(7)7100% is the relative error of the approximate analytical results. Table 1 also presents 
data from [3, 7, 8, i0]. On a planar shock wave in an inhomogeneous atmosphere since those 
values are sometimes used to describe spherical waves. Equation (I0) achieves highest ac- 
curacy at ? = 1.5, with the error comprising units of percent for ? = 1.2-2.0, while at ? = 
i.I, 6 = 12.7r For any values ? the results of Eq. (I0) are more accurate than those of [4, 
5] for a spherical wave. For a plane wave at ? = 2.0 the result of [8, 3] is much closer to 
b,(?) of a spherical wave from [6] than Eq. (i0). Strictly speaking, comparison of data for 
plane and spherical waves is incorrect, and moreover the case ? = 2.0 corresponds to a frozen 
degree of ionization for low medium densities (which situation is of little interest for 
intense shock waves). We note that the accuracy of the method of [9-II] cannot be established 
in the general case. The closeness of the data of [6] and E~. (I0) is evidence of the ad- 
vantages of the method of [9-ii]. A significant factor in obtaining Eqs. (8)-(10) was the 
decrease in density of the undisturbed medium as the shock wave propagates. This ensures an 
increase in shock wave velocity with increase in R for R > R 0. The method of [9-11] cannot 
be used for ~/2 < 0 ~ ~ and H = ~ (in a homogeneous medium), since a decrease in shock wave 
velocity occurs with increase in R. In such a situation the wave changes from intense (M > 
i) to weak (M + I). 

We will consider the evolution of the intense shock wave (M >> i) of Eqs. (2), (i0). In 
our approximation M = M(R) and is independent of X (X i R). This means that we have the 
local property uIIRI[~ and from Eq. (i0) with consideration of u = dR/dt we obtain an expres- 
sion to describe shock front evolution 

IR( , o ) -  Rol cosO --t~j (t~176176 (ii) 

At t = t=(0) there is a "break" of the shock front at infinity over a finite time, i.e., 
"explosive" instability is realized. Initially the "break" occurs in the direction ~ = 0 at 
the time t = to(0). With increase in time the angular sector 0 encompassed by this "break" 
expands. Figure 2 shows the form of the shock wave as a function of dimensionless time t = 
t/to(0) (lines 1-7 correspond to t = 0.5, 0.75, 0.95, 1.0, i.i, 1.25, 1.5) with the radius 
vector r(9) taken in the form of the dimensionless quantity 5(T ) JR(t, 0)--~0IH -I. The maximum 
horizontal distance traversed by the shock wave by the time t = t~(0) can be estimated from 

the expression maxr : R 0 ~ 1.23H/5(7 ) (~>1.5 H, b-1(y) ~ 5.7). This means that max r > 8.5H. 

The horizontal distance in the plane 0 = ~/2 traversed by the shock wave by the time 

t ~ t~(0) r(O = ~/2) : R 0 ~Hb=I>7.2 H. For comparison we can perform an estimate from the 
data of [i]: max r = 2.04H. If we take a 0 = 400 m/sec, H = 104 m, b -I = 5.7, we find a value 
of the parameter t~(O) = 2.4/M min (M 0 > !). 

In the region of departure of the shock front to infinity the assumption of weak depen- 
dence of the fields on angle 0 becomes invalid together with the conditions for applicability 
of Eqs. (I0), (ii). From Eqs. (i0), (ii) we obtain an expression for evolution of the shock 
wave velocity 
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u(t, O)~  (H/b(v))lt~(O) - - t  cos 0] -1, M(t, 0) :- Mot~(O)/(t~(O ) -  t cos0). (12) 

- C o n s i d e r i n g  Eqs .  ( 2 ) ,  ( 1 0 ) ,  and  (12)  f o r  M >> 1, we can  o b t a i n  e x p r e s s i o n s  f o r  t h e  v ,  p ,  p, a 
fields in the shock wave. 

As an example we present expressions for the pressure: 

R cos 0 [ 
p ( / ~ , 0 ) = D ~ ( 0 ) e ~ p  - - ( l - - 2 b )  1~ ' p ( t ' 0 ) = O  2(0) I - -  

D I ( 0 ) =  t ( 2bRo ) 2Mo2a~9o (0) exp - -  ~ cos 0 , 

D2(0 )=  ' ', '~ 2 ( It0 ) .M0a09 o (0) exp --  7/- cos0 . 

1--2b 
t cosO] b 

, 

As R - +  oo p - +  0 (t--+ too(O)). 
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